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The formulation and first solution of the problem of the development of a laminar sub- 
merged axisymmetric viscous incompressible fluid jet is due to Loitsyanskii [i]. The prob- 
lem was solved on the basis of the laminar boundary-layer equations by the method of asymp- 
totic expansions. Loitsyanskii found the first and second terms of the velocity component 
expansions in finite form. The third and fourth terms of the velocity of the expansions were 
determined in [2, 3], respectively. The solution permits taking account of the influence of 
the shape of the initial escape velocity profile on the velocity distribution in the jet. 
Heat transfer in an axisymmetric non-self-similar jet is examined in [4] for Pr = i. 

In this paper, the excess temperature distribution in submerged axisymmetric jets is ob- 
tained for any values of the Prandtl number, and certain features of the asymptotic velocity 
and temperature expansions are clarified within the framework of the Loitsyanskii theory. Re- 
sults are presented of experimental investigations of the distribution of the gas impurity 
concentration in an axisymmetric turbulent air jet with initial nonuniformity in the escape 
velocity, which are compared with the solution obtained. 

i. Laminar Jet 

The heat-transport equation in a laminar viscous incompressible fluid boundary layer in 
the case of axisymmetric motion in a cylindrical coordinate system has the form 

OAT OAT f OaAT I OAT ) 
u OX + v  = a  4 �9 (i) ar ~ Or ~ r Or 

Here X is the longitudinal distance from the jet source and r is the distance from the jet 
axis. 

In addition to the condition of conservation of the momentum Ko [i], an integral invari- 
ant of the problem is the condition of conservation of the excess heat content in the jet [5] 

Qo = 2~pcp~ uATrdr = cons~ .  

0 

Let us introduce the new independent variables [i] 

x = X ,  ~ = r ( X v )  -I 

and let us add the expansion 

(2) 

(3) 

AT = dt + d~ da 
-7 7;+i  7+.. .  (4) 

to the asymptotic expansions of the velocity and pressure components of the "dynamic" problem 

1 a~ I a~ 1 a~ t 
u = - - - - +  x~ + § + . . .  ++o0 +} +I - 7  +I I x  2 

Here ~, ao, ax, a2 are functions defined in the papers mentioned, d i (i = i, 2,...) are un- 
known functions of D. As a result of substituting the expansions into (i) and equating co- 
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efficients of terms containing identical powers of x, we obtain a system of 
ential equations to determine the unknown functions d~, d=, ds,...: 

Prad; d[ + 1 § + Pr -- d i = 0 , 

d;+ l + P r a d ~ + 2 P r _ _ d ~ = _ p r  a0d,,  

1 + Pra --i 

d; q- 3Pr a d3 = - -  2Pr ao d~ - -  Pr a--i d, + Pr a--!t d~ . . . .  
11 n ~1 n 

da ~- - -  

ordinary 

Analogously, from (2) we have the integral conditions 

~&l--  2 ~ t c P  ' 
0 0 

.[-(a'-d 3 + a;d 2 +a;d , )  &l = 0 , . . .  
0 

According to the boundary conditions of the problem [5]: 

di(O) < M ~ o u n d e d ) , . d i ( ~ ) = 0  ( i=1 ,2  .... ) .  

In the new variable ~ [i] 

1 ~ 2 ~ 2 ( 1 +  1 ~2~z) -1 V 3Ko 

the first equation in (5) 

whose solution satisfying 

Here 

is hypergeometric 

( 1 - - ~ ) d [ + [ l - - 2 ( l - -  P r ) ~ ] d ~ + 2 P r d ~ = O ,  

t he  boundary  (7) and f i r s t  i n t e g r a l  c o n d i t i o n s  

di (~) = a-2F (--  2Pr, 1, 1, ~) = 2~z(1 -- ~) 2Pr  

(6) has the 

The second and 

~ , /  Q0 (1 + 2Pr)Ill 

v 16~cp 

third equations of (5) are 

(I - -  ~) d~ -}- [1 - -  2 (I - -  Pr) ~] d~ -{- 4Prd~ = ~2 Pr(1 -- ~)2Pr (1 -- 4~), 
2 

~ ( 1 - - ~ ) d ~ + [ 1 - - 2 ( 1 - - P r ) ~ l d ~ + 6 P r d ~ = - -  ~ 2a2 Pr - - ( 3 P r + 9 ) ~ + ( 1 2 P r + 6 ) ~ 2  
2 , " 

The homogeneous c o n d i t i o n s  c o r r e s p o n d i n g  to  ( l l )  a r e  h y p e r g e o m e t r i c  

( l - - ~ ) d [ + [ 1 - - 2 ( l - - P r ) ~ ] d ~ + 2 k P r d ~ = 0 ,  k = 1 , 2  
and have  the  s o l u t i o n s  [6] 

(ak). (bk). 
.=, (hi) 2 

dh = c f  (ak, bh, 1, ~) + c~ { F (a~, bh, 1, ~) In [ + 

"[*(ak+n)--4(ak)+4(bk+n) - -  24 (n + 1 )  + 24 (n)] , k = 2 , 3 .  

Here 
1 

a h --  
2 

P r +  + [ 1  + 4 (2k - -  1 ) P r +  4PtZ]I/2 , 

differ- 

(5) 

(6) 

(7) 

(8) 

form 

(9) 

(io) 

(11) 

(12) 
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Fig. i. Change in the maximal veloci- 
ties Um/Uo and concentrations of the 
gas impurity Cm/Co along the x axis of 
an axisymmetric turbulent jet: i) self- 
similar solution; 2) non-self-similar 
solution; points are results of measure- 
ments. 

1 --Pr--  I [l+4(2k--1)Pr+4PrZ]l/2- 
T V 

~with the appropiate argument is the Euler ~-function, and c~ and e2 are constants of inte- 
gration. Particular integrals of the inhomogeneous differential equations (ii) are 

d2 (~) = -- ~ ( 1 -  Pr) 2pr (1 -- 4Pr~), 

ds(;)=- ~ - ~ ( l - - P r ) 2 p r [ p r ( 2 P r + l ) ~ z - - 5 p r ; + @ ] .  
(13) 

According to the boundary conditions (7), the constants of integration are c~ = c2 = 0, and 
the solutions of (ii) are only the particular integrals (13). 

According to (8), expansion (4) in the variable n has the form 

2~ 2 1 [ [~ l + ( 1 - - p r )  c~z~12 1 
A T = (  1 ) 2p~ 1 - - - -  1 z z x 

1 + 0~%1~ x 4 1 + --4-cz ~1 

For the value Pr = i, a change in AT expresses similarity of the temperature and velocity 
fields in a submerged fluid jet, which corresponds to the results obtained earlier [4]. 

2. Turbulent Jet 

Following the hypothesis of Loitsyanskii [i], an axisymmetric turbulent m~merged vis- 
cous incompressible fluid jet can be considered laminar but with a molar viscosity. There- 
fore, the results obtained for a laminar jet are assumed true for a turbulent flow also, but 
under the assumption that the magnitudes of the velocities are averaged in time, and we take 
the coefficients of molar viscosity A and kinematic turbulent viscosity e instead of the co- 
efficients of molecular viscosity ~ and kinematic viscosity ~. In conformity with this, we 
replace the Prandtl number of the laminar flow by the "turbulent" Prandtl number Pr t. The 
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Fig. 2. Distribution of the velocity u/uo (a) and concentra- 
tion C/Co (b) over sections ~ of an axisymmetric turbulent 
jet: i) x/d= 6; 2) 8; 3) I0; 4) 20; 5) 30. 

intensity of mass transfer in axisymmetric turbulent submerged jets can be assessed by means 
of the distribution of the gas impurity concentration therein. Since the process of sub- 
stance transfer in viscous incompressible fluid jets is equivalent to the process of heat 
transfer [5, 7]~ then these processes are described by identical equations with the appro- 
priate replacement of the temperature AT by the expression for the concentration C, and the 
thermal diffusivity coefficient by the diffusion coefficient, i.e., Pr t by Sc. Therefore, 
the distribution of the gas impurity concentration in turbulent axisymmetric submerged jets 
is described by (14) with the remarks made taken into account. 

Experimental investigations were performed of the distribution of the gas impurity con- 
centration in an axisymmetric turbulent air jet escaping from a nozzle ~ 10.5 mm (Po = 77 
m/sec, Re = 4.9"104). A gas mixture, for which methane was used in a quantity of 1% rela- 
tive to the air flow through the nozzle, was added to the pipeline supplying air to the noz- 
zleo The air--gas jet obtained was delivered to a cylindrical pipe 800 mm in diameter, which 
connected to an exhaust fan, where the relationships between the air flow through the nozzle 
and the pipe were I:i0. The ratio between the diameters of the nozzle and the cylindrical 
pipe was such that the section of the jet from the nozzle exit to the section at 40 calibers 
distance could be considered a submerged jet. To eliminate the influence of the walls on 
development of the jet through the pipe, a fan continuously exhausted the air out at a rate of 
0.5 m/sec. A Pitot-Prandtl tube was used as primary measuring device, ~nd after having mea- 
sured the velocity, was used as gas eliminator. The secondary measuring devices were MMN- 
250 micromanometers and the gas chromatograph "Color" with the recorder KSP-4. The accuracy 
of measuring the methane concentration in the mixture was 3%. 

The integral cogstants of the jet investigated ~ and ~ were determined according to (8) 
and (i0) (~ = 49.7; ~ = 15.8, where Sc = 0.7 [7] was used in the latter formula in place of 
Pr). The characteristic constant 9, which takes account of the influence of the initial ve- 
locity profile (at the nozzle exit), is determined by a semiempirical method [3] (B = 63). 

~he change in the maximal velocities Um/U o and the concentrations Cm/C o along the jet 
axis x = x/d is represented in Fig. i. Curve 1 corresponds to the self-similar solution (the 
first term for ~ = 0 is taken in the velocity and concentration expansions (14)), 2 is 
taken from the appropriate formulas of the non-self-similar solution (taking three terms of 
the expansions into account). It is seen from the figure that the section in which curves 1 
and 2 practically merge can be considered the boundary of the transition and basic (self- 
similar) sections of the jet. Fo[ the jet investigated, this section is at a distance from 
the nozzle exit corresponding to x = 20. 

Results of calculating the distributions of the velocity u/uo (from formulas in [I, 2]) 
and the concentration C/Co (formula (14)) over the sections an of the transition (x = 8.1) 
and the basic (x = 20.3) sections of the jet investigated, where the variable is related to 
the jet radius by the formula [3]: q = Kqro/x (for the jet investigated kq = 1.5), are 
presented in Fig. 2a, b. The points represent results of measurements. 

1103 



NOTATION 

x, r, longitudinal and transverse coordinates; u, v, axial and radial components of the 
velocity vector; AT, excess temperature above the environmental; a, thermal diffusivity co- 
efficient; Ko, momentum; Qo, heat flux; Cp, specific heat at constant pressure; C, value of 
the impurity concentration; O, density; F, symbol for the hypergeometric function; Pr, 
Prandtl number; Re, Reynolds number; Sc, Schmidt number; Uo, value of the mean discharge ve- 
locity; Co, value of the initial methane impurity concentration. 
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VISCOUS FLOW OF LIQUID GLYCERIN--POLYETHYLENE GLYCOL--WATER MIXTURES 

Yu. A. Atanov and A. I. Berdenikov UDC 539.374:678.84 

The viscous flow of liquid water--glycerin mixtures is analyzed within the frame- 
work of free volume theory and thermodynamic reaction-rate theory. 

Nonflammable liquids based on water-glycerin mixtures are currently!widely used in in- 
dustry and transportation [i]. These mixtures have the designations PGV, P-20, P-20MI, and 
P-20M2. The percentage content of the main components is shown in Table l. 

Measurements of the dynamic viscosity of these mixtures have been made in experiments 
for a broad range of temperatures and pressures [2]. Study of such mixtures is interesting 
first of all from the point of view of learning more about the intermolecular hydrogen bonds 
[3]. The molecules of all three components contain OH groups which form H-bonds between ad- 
jacent molecules. The high degree of molecular association resulting from this is the rea- 
son for the appreciable delay in transfer processes (diffusion, viscous flow, etc.) compared 
to nonassociated liquids of the same molecular weight. 

Unfortunately, interpretation of experimental data in this case is complicated by the 
fact that the three-component mixture has a very complicated and nonuniform structure. Also, 
there are various additives ranging from 3 to 7% in the investigated mixtures, which may al- 
so affect the validity of any conclusions made. Finally, the interval of concentrations of 
the components in these mixtures is too narrow to obtain sufficiently reliable conclusions 
and recommendations as to the composition of mixtures with certain properties. 

To analytically represent the empirical data, we will use a semiempirical relation link- 
ing the viscosity and density of the liquid and based on free volume theory [4]. Analysis 
of the data shows that it can be described satisfactorily if the empirical dependence of the 
specific volume of the "incompressible" nuclei on temperature is determined. 
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